Skip to Main Content

An official website of the United States government

About this Publication
Title
Lipidomics and pancreatic cancer risk in two prospective studies.
Pubmed ID
37169992 (View this publication on the PubMed website)
Digital Object Identifier
Publication
Eur J Epidemiol. 2023 May 12
Authors
Naudin S, Sampson JN, Moore SC, Albanes D, Freedman ND, Weinstein SJ, Stolzenberg-Solomon R
Affiliations
  • Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, DHHS, 9609 Medical Center Drive, NCI Shady Grove, Room 6E420, Rockville, MD, 20850, USA.
  • Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Rockville, MD, USA.
  • Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, DHHS, 9609 Medical Center Drive, NCI Shady Grove, Room 6E420, Rockville, MD, 20850, USA. rs221z@nih.gov.
Abstract

Pancreatic ductal carcinoma (PDAC) is highly fatal with limited understanding of mechanisms underlying its carcinogenesis. We comprehensively investigated whether lipidomic measures were associated with PDAC in two prospective studies. We measured 904 lipid species and 252 fatty acids across 15 lipid classes in pre-diagnostic serum (up to 24 years) in a PDAC nested-case control study within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO, NCT00002540) with 332 matched case-control sets including 272 having serial blood samples and Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC, NCT00342992) with 374 matched case-control sets. Controls were matched to cases by cohort, age, sex, race, and date at blood draw. We used conditional logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI) per one-standard deviation increase in log-lipid concentrations within each cohort, and combined ORs using fixed-effects meta-analyses. Forty-three lipid species were associated with PDAC (false discovery rate, FDR ≤ 0.10), including lysophosphatidylcholines (LPC, n = 2), phosphatidylethanolamines (PE, n = 17), triacylglycerols (n = 13), phosphatidylcholines (PC, n = 3), diacylglycerols (n = 4), monoacylglycerols (MAG, n = 2), cholesteryl esters (CE, n = 1), and sphingomyelins (n = 1). LPC(18:2) and PE(O-16:0/18:2) showed significant inverse associations with PDAC at the Bonferroni threshold (P value < 5.5 × 10-5). The fatty acids LPC[18:2], LPC[16:0], PC[15:0], MAG[18:1] and CE[22:0] were significantly associated with PDAC (FDR < 0.10). Similar associations were observed in both cohorts. There was no significant association for the differences between PLCO serial lipidomic measures or heterogeneity by follow-up time overall. Results support that the pre-diagnostic serum lipidome, including 43 lipid species from 8 lipid classes and 5 fatty acids, is associated with PDAC.

Related CDAS Studies
Related CDAS Projects