PFAS predictive modeling using case control study data
Reps, J. M., Ryan, P. B., Rijnbeek, P. R., & Schuemie, M. J. (2021). Design matters in patient-level prediction: evaluation of a cohort vs. case-control design when developing predictive models in observational healthcare datasets. Journal of Big Data, 8, 1-18.
Rentroia-Pacheco, B., Bellomo, D., Lakeman, I. M., Wakkee, M., Hollestein, L. M., & van Klaveren, D. (2024). Weighted metrics are required when evaluating the performance of prediction models in nested case–control studies. BMC Medical Research Methodology, 24(1), 115.
The specific application concerns prediction of renal cell carcinoma, as a function of serum PFAS levels and other predictors. This will build on:
Shearer, J. J., Callahan, C. L., Calafat, A. M., Huang, W. Y., Jones, R. R., Sabbisetti, V. S., … & Hofmann, J. N. (2021). Serum concentrations of per-and polyfluoroalkyl substances and risk of renal cell carcinoma. JNCI: Journal of the National Cancer Institute, 113(5), 580-587.
1. Develop Bayesian predictive model methodology using data from case control studies
2. Develop and evaluate a predictive model for renal cell carcinoma using data from the PLCO, specifically Shearer et al. (2021)
None