Subtype and grade classification using histopathologic slides
Our algorithm is expected to automatically find image features that are correlative with the patient's grade and cancer subtype.
Our models are expected to perform predictions of the grade and cancer subtype of the patient based on the characteristic features that were found.
Aim 1 - Correlate between morphologic features in histopathology images and the patient's cancer grade using ML algorithms.
We will develop a supervised deep convolutional network that will receive slides containing cancer cells as input and will be trained to predict the slide's grade.
Aim 2 - Correlate between morphologic features in histopathology images and the patient's cancer subtype using ML algorithms. Constructing a model for subtype prediction using histopathology slides.
Prof. Kun-Hsing Yu, Harvard University.