A Generalizable Data Framework towards Precision Radiotherapy
By leveraging the wealth of data generated in the radiotherapy clinic, the project aims to develop a generalized deep reinforcement learning (DRL) tool for cancer risk stratification. Based on the DRL tool, an ensemble model will be built to analyze all the data types useful to patient outcome prediction. The model will be validated with independent datasets to ensure generalization. To account for information from multiple imaging modalities combined with treatment plans, a multimodal deep reinforcement learning (mDRL) model will be developed and trained with patient data stored in the electronic medical record system, as well as genomic information derived from blood and tissue specimens. The detection tool will be used in both lung cancer and colorectal cancer patients. Generalization to a variety of other cancers will be possible once the tools become available to the clinical research community. The ensemble model will allow integrated analysis of multiple data types recorded along the patient outcome trajectory, provide better discrimination between tumor phenotypes and superior predictive power. The framework will be designed to coordinate and synthesize various types of evidence and measurements into scores for the objective assessment and quantification of outcomes and endpoints. This strategy will ultimately provide novel patient re-stratification and support clinical decisions for highly individualized patient management.
1. Develop a deep learning model for cancer risk stratification
2. Build an ensemble modeling framework for patient outcome prediction
3. Validate the results with independent datasets for generalization
Enrico Capobianco, PhD, University of Miami
Harrison Zhou, PhD, Yale University