Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

Principal Investigator
Name
Benedikt Graf
Degrees
Ph.D.
Institution
IBM Watson Health
Position Title
Senior Scientist, Imaging Analytics
Email
About this CDAS Project
Study
PLCO (Learn more about this study)
Project ID
PLCO-359
Initial CDAS Request Approval
Apr 6, 2018
Title
Lung abnormality detection from chest radiography
Summary
Chest radiography is one of the most commonly used medical imaging modalities. The relatively low cost and low radiation exposure risk associated with chest radiography has made it often the first imaging test to help with diagnosis of suspected conditions. A large variety of lung abnormalities and diseases can be evaluated from chest radiographs, such as pulmonary nodules, pleural effusion, and emphysema.

The primary goal of this project is to perform image-based lung abnormality detection from chest radiographs using modern machine learning techniques. The target abnormalities include pulmonary nodules and Chronic Obstructive Pulmonary Diseases (COPDs). A secondary goal is to predict the detected diseases' severities, for example, the size of a nodule and the stage of the COPD. The detection and prediction outcomes will be evaluated against the clinical outcomes.
Aims

1. Develop machine learning algorithms to detect lung abnormalities from chest radiographs;
2. Develop machine learning algorithms to predict the severities of detected lung abnormalities;
3. Validate the algorithms on clinical findings included in the database.

Collaborators

To be determined