Skip to Main Content

COVID-19 is an emerging, rapidly evolving situation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

About this Publication
Title
Mitochondrial somatic mutations and the lack of viral genomic variation in recurrent respiratory papillomatosis.
Pubmed ID
31719597 (View this publication on the PubMed website)
Digital Object Identifier
Publication
Sci Rep. 2019 Nov 12; Volume 9 (Issue 1): Pages 16625
Authors

Hao Y, Ruiz R, Yang L, Neto AG, Amin MR, Kelly D, Achlatis S, Roof S, Bing R, Kannan K, Brown SM, Pei Z, Branski RC

Abstract

Recurrent Respiratory Papillomatosis (RRP) is a rare disease of the aerodigestive tract caused by the Human Papilloma Virus (HPV) that manifests as profoundly altered phonatory and upper respiratory anatomy. Current therapies are primarily symptomatic; enhanced insight regarding disease-specific biology of RRP is critical to improved therapeutics for this challenging population. Multiplex PCR was performed on oral rinses collected from twenty-three patients with adult-onset RRP every three months for one year. Twenty-two (95.6%) subjects had an initial HPV positive oral rinse. Of those subjects, 77.2% had an additional positive oral rinse over 12 months. A subset of rinses were then compared to tissue samples in the same patient employing HPViewer to determine HPV subtype concordance. Multiple HPV copies (60-787 per human cell) were detected in RRP tissue in each patient, but a single dominant HPV was found in individual samples. These data confirm persistent oral HPV infection in the majority of patients with RRP. In addition, three novel HPV6 isolates were found and identical HPV strains, at very low levels, were identified in oral rinses in two patients suggesting potential HPV subtype concordance. Finally, somatic heteroplasmic mtDNA mutations were observed in RRP tissue with 1.8 mutations per sample and two nonsynonymous variants. These data provide foundational insight into both the underlying pathophysiology of RRP, but also potential targets for intervention in this challenging patient cohort.

Related CDAS Studies
Related CDAS Projects