Skip to Main Content
About this Publication
Title
Coronary calcium scoring with partial volume correction in anthropomorphic thorax phantom and screening chest CT images.
Pubmed ID
30571729 (View this publication on the PubMed website)
Publication
PloS one. 2018; Volume 13 (Issue 12): Pages e0209318
Authors

Šprem J, de Vos BD, Lessmann N, van Hamersvelt RW, Greuter MJW, de Jong PA, Leiner T, Viergever MA, Išgum I

Abstract

The amount of coronary artery calcium determined in CT scans is a well established predictor of cardiovascular events. However, high interscan variability of coronary calcium quantification may lead to incorrect cardiovascular risk assignment. Partial volume effect contributes to high interscan variability. Hence, we propose a method for coronary calcium quantification employing partial volume correction.

Two phantoms containing artificial coronary artery calcifications and 293 subject chest CT scans were used. The first and second phantom contained nine calcifications and the second phantom contained three artificial arteries with three calcifications of different volumes, shapes and densities. The first phantom was scanned five times with and without extension rings. The second phantom was scanned three times without and with simulated cardiac motion (10 and 30 mm/s). Chest CT scans were acquired without ECG-synchronization and reconstructed using sharp and soft kernels. Coronary calcifications were annotated employing the clinically used intensity value thresholding (130 HU). Thereafter, a threshold separating each calcification from its background was determined using an Expectation-Maximization algorithm. Finally, for each lesion the partial content of calcification in each voxel was determined depending on its intensity and the determined threshold.

Clinical calcium scoring resulted in overestimation of calcium volume for medium and high density calcifications in the first phantom, and overestimation of calcium volume for high density and underestimation for low density calcifications in the second phantom. With induced motion these effects were further emphasized. The proposed quantification resulted in better accuracy and substantially lower over- and underestimation of calcium volume even in presence of motion. In chest CT, the agreement between calcium scores from the two reconstructions improved when proposed method was used.

Compared with clinical calcium scoring, proposed quantification provides a better estimate of the true calcium volume in phantoms and better agreement in calcium scores between different subject scan reconstructions.

Related CDAS Studies