Skip to Main Content

COVID-19 is an emerging, rapidly evolving situation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

About this Publication
Title
A Bayesian model for estimating multi-state disease progression.
Pubmed ID
28038345 (View this publication on the PubMed website)
Publication
Comput. Biol. Med. 2016 Dec; Volume 81: Pages 111-120
Authors

Shen S, Han SX, Petousis P, Weiss RE, Meng F, Bui AA, Hsu W

Abstract

A growing number of individuals who are considered at high risk of cancer are now routinely undergoing population screening. However, noted harms such as radiation exposure, overdiagnosis, and overtreatment underscore the need for better temporal models that predict who should be screened and at what frequency. The mean sojourn time (MST), an average duration period when a tumor can be detected by imaging but with no observable clinical symptoms, is a critical variable for formulating screening policy. Estimation of MST has been long studied using continuous Markov model (CMM) with Maximum likelihood estimation (MLE). However, a lot of traditional methods assume no observation error of the imaging data, which is unlikely and can bias the estimation of the MST. In addition, the MLE may not be stably estimated when data is sparse. Addressing these shortcomings, we present a probabilistic modeling approach for periodic cancer screening data. We first model the cancer state transition using a three state CMM model, while simultaneously considering observation error. We then jointly estimate the MST and observation error within a Bayesian framework. We also consider the inclusion of covariates to estimate individualized rates of disease progression. Our approach is demonstrated on participants who underwent chest x-ray screening in the National Lung Screening Trial (NLST) and validated using posterior predictive p-values and Pearson's chi-square test. Our model demonstrates more accurate and sensible estimates of MST in comparison to MLE.

Related CDAS Studies