Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
Interaction of CYP1B1, cigarette-smoke carcinogen metabolism, and lung cancer risk.
Pubmed ID
21532841 (View this publication on the PubMed website)
Publication
Int J Mol Epidemiol Genet. 2010; Volume 1 (Issue 4): Pages 295-309
Authors
Church TR, Haznadar M, Geisser MS, Anderson KE, Caporaso NE, Le C, Abdullah SB, Hecht SS, Oken MM, Van Ness B
Abstract

A previously published case-control study nested in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial found a significant relationship of serum levels of total NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronides) to prospective lung cancer risk. The present paper examines this relationship in the context of single-nucleotide polymorphisms (SNPs) in genes important in the metabolism of tobacco smoke carcinogens. DNA was extracted from the subjects' lymphocytes and analyzed for SNPs in 11 locations on four genes related to tobacco carcinogen metabolism. Logistic regressions on case-control status were used to estimate main effects of SNPs and biomarkers and their interactions adjusting for potential confounders. Of the 11 SNPs, only one, in CYP1B1, significantly interacted with total NNAL affecting risk for lung cancer. At low NNAL levels, the variant appeared protective. However, for those with the minor variant, the risk for lung cancer increased with increasing NNAL five times as rapidly compared to those without it, so that at high NNAL levels, this SNP's protection disappears. Analyzing only adenocarcinomas, the effect of the variant was even stronger, with the risk of cancer increasing six times as fast. A common polymorphism of CYP1B1 may play a role in the risk of NNK, a powerful lung carcinogen, in the development of lung cancer in smokers.

Related CDAS Studies
Related CDAS Projects