Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
Automatic Slice Identification in 3D Medical Images with a ConvNet Regressor
Digital Object Identifier
Publication
Lecture Notes in Computer Science. 2016 Oct; Pages 161-169
Authors
De Vos, Bob & Viergever, Max & Jong, Pim & Išgum, Ivana
Abstract

Identification of anatomical regions of interest is a prerequisite in many medical image analysis tasks. We propose a method that automatically identifies a slice of interest (SOI) in 3D images with a convolutional neural network (ConvNet) regressor.
In 150 chest CT scans two reference slices were manually identified: one containing the aortic root and another superior to the aortic arch. In two independent experiments, the ConvNet regressor was trained with 100 CTs to determine the distance between each slice and the SOI in a CT. To identify the SOI, a first order polynomial was fitted through the obtained distances.
In 50 test scans, the mean distances between the reference and the automatically identified slices were 5.7 mm (4.0 slices) for the aortic root and 5.6 mm (3.7 slices) for the aortic arch.
The method shows similar results for both tasks and could be used for automatic slice identification.

Related CDAS Studies
Related CDAS Projects