Skip to Main Content

An official website of the United States government

About this Publication
Title
Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada.
Pubmed ID
28170394 (View this publication on the PubMed website)
Digital Object Identifier
Publication
PLoS Med. 2017 Feb; Volume 14 (Issue 2): Pages e1002225
Authors
Ten Haaf K, Tammemägi MC, Bondy SJ, van der Aalst CM, Gu S, McGregor SE, Nicholas G, de Koning HJ, Paszat LF
Affiliations
  • Department of Public Health, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands.
  • Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.
  • University of Toronto Dalla Lana School of Public Health, Ontario, Canada.
  • Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.
  • Population, Public & Indigenous Health, Alberta Health Services, Calgary, Alberta, Canada.
  • The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
Abstract

BACKGROUND: The National Lung Screening Trial (NLST) results indicate that computed tomography (CT) lung cancer screening for current and former smokers with three annual screens can be cost-effective in a trial setting. However, the cost-effectiveness in a population-based setting with >3 screening rounds is uncertain. Therefore, the objective of this study was to estimate the cost-effectiveness of lung cancer screening in a population-based setting in Ontario, Canada, and evaluate the effects of screening eligibility criteria.

METHODS AND FINDINGS: This study used microsimulation modeling informed by various data sources, including the Ontario Health Insurance Plan (OHIP), Ontario Cancer Registry, smoking behavior surveys, and the NLST. Persons, born between 1940 and 1969, were examined from a third-party health care payer perspective across a lifetime horizon. Starting in 2015, 576 CT screening scenarios were examined, varying by age to start and end screening, smoking eligibility criteria, and screening interval. Among the examined outcome measures were lung cancer deaths averted, life-years gained, percentage ever screened, costs (in 2015 Canadian dollars), and overdiagnosis. The results of the base-case analysis indicated that annual screening was more cost-effective than biennial screening. Scenarios with eligibility criteria that required as few as 20 pack-years were dominated by scenarios that required higher numbers of accumulated pack-years. In general, scenarios that applied stringent smoking eligibility criteria (i.e., requiring higher levels of accumulated smoking exposure) were more cost-effective than scenarios with less stringent smoking eligibility criteria, with modest differences in life-years gained. Annual screening between ages 55-75 for persons who smoked ≥40 pack-years and who currently smoke or quit ≤10 y ago yielded an incremental cost-effectiveness ratio of $41,136 Canadian dollars ($33,825 in May 1, 2015, United States dollars) per life-year gained (compared to annual screening between ages 60-75 for persons who smoked ≥40 pack-years and who currently smoke or quit ≤10 y ago), which was considered optimal at a cost-effectiveness threshold of $50,000 Canadian dollars ($41,114 May 1, 2015, US dollars). If 50% lower or higher attributable costs were assumed, the incremental cost-effectiveness ratio of this scenario was estimated to be $38,240 ($31,444 May 1, 2015, US dollars) or $48,525 ($39,901 May 1, 2015, US dollars), respectively. If 50% lower or higher costs for CT examinations were assumed, the incremental cost-effectiveness ratio of this scenario was estimated to be $28,630 ($23,542 May 1, 2015, US dollars) or $73,507 ($60,443 May 1, 2015, US dollars), respectively. This scenario would screen 9.56% (499,261 individuals) of the total population (ever- and never-smokers) at least once, which would require 4,788,523 CT examinations, and reduce lung cancer mortality in the total population by 9.05% (preventing 13,108 lung cancer deaths), while 12.53% of screen-detected cancers would be overdiagnosed (4,282 overdiagnosed cases). Sensitivity analyses indicated that the overall results were most sensitive to variations in CT examination costs. Quality of life was not incorporated in the analyses, and assumptions for follow-up procedures were based on data from the NLST, which may not be generalizable to a population-based setting.

CONCLUSIONS: Lung cancer screening with stringent smoking eligibility criteria can be cost-effective in a population-based setting.

Related CDAS Studies
Related CDAS Projects