Skip to Main Content

COVID-19 is an emerging, rapidly evolving situation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://covid19.nih.gov/

About this Publication
Title
Association Analysis of Driver Gene-Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls.
Pubmed ID
32277007 (View this publication on the PubMed website)
Digital Object Identifier
Publication
Cancer Epidemiol. Biomarkers Prev. 2020 Apr 10
Authors

Wang Y, Gorlova OY, Gorlov IP, Zhu M, Dai J, Albanes D, Lam S, Tardon A, Chen C, Goodman GE, Bojesen SE, Landi MT, Johansson M, Risch A, Wichmann HE, Bickeboller H, Christiani DC, Rennert G, Arnold SM, Brennan P, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Hung RJ, Andrew AS, Kiemeney LA, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Woll PJ, Lazarus P, Schabath MB, Aldrich MC, Stevens VL, Ma H, Jin G, Hu Z, Amos CI, Shen H

Abstract

BACKGROUND: A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated.

METHODS: We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent). Conditional and joint association analysis was performed to identify independent risk variants. The associations of independent risk variants with somatic alterations in lung CDGs or recurrently altered pathways were investigated using data from The Cancer Genome Atlas (TCGA) project.

RESULTS: We identified seven independent SNPs in five lung CDGs that were consistently associated with lung cancer risk in discovery (P < 0.001) and validation (P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung cancer susceptibility locus (OR = 0.86, P = 1.65 × 10-6). Subgroup analysis by histologic types further identified nine lung CDGs. Analysis of somatic alterations found that in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 1.76 × 10-3).

CONCLUSIONS: Genetic variants can regulate functions of lung CDGs and influence lung cancer susceptibility.

IMPACT: Our findings might help unravel biological mechanisms underlying lung cancer susceptibility.

Related CDAS Studies
Related CDAS Projects