Machine Learning with Low Dose CT Data
Principal Investigator
Name
Bennett Landman
Degrees
PhD
Institution
Vanderbilt University
Position Title
Professor
Email
About this CDAS Project
Study
NLST
(Learn more about this study)
Project ID
NLST-993
Initial CDAS Request Approval
Dec 8, 2022
Title
Machine Learning with Low Dose CT Data
Summary
We seek to develop method to integrate assessment of body habitus with lung cancer risk. We are developing both cross-sectional and longitudinal learning frameworks. We are targeting quantitative anatomical modeling (e.g., semantic segmentation), lung nodule identification / classification, and risk stratification. We are developing supporting image processing techniques to harmonize imaging and improve inter-site reproducibility.
Aims
* Segment anatomy within the chest CT field of view
* Identify potentially cancerous lung nodules
* Assess likelihood of cancer within specific nodules and a time point in a holistic manner.
* Perform image processing to improve inter-site consistency and enhance performance of the above objectives.
Collaborators
Fabien Maldonado, VUMC
Kim Lori Sandler, VUMC
Tom Lasko, VUMC
Related Publications
-
Lung CT harmonization of paired reconstruction kernel images using generative adversarial networks.
Krishnan AR, Xu K, Li TZ, Remedios LW, Sandler KL, Maldonado F, Landman BA
Med Phys. 2024 Mar 26 PUBMED -
Age-related Muscle Fat Infiltration in Lung Screening Participants: Impact of Smoking Cessation.
Xu K, Li TZ, Terry JG, Krishnan AR, Deppen SA, Huo Y, Maldonado F, Carr JJ, Landman BA, Sandler KL
medRxiv. 2023 Dec 5 PUBMED -
AI Body Composition in Lung Cancer Screening: Added Value Beyond Lung Cancer Detection.
Xu K, Khan MS, Li TZ, Gao R, Terry JG, Huo Y, Lasko TA, Carr JJ, Maldonado F, Landman BA, Sandler KL
Radiology. 2023 Jul; Volume 308 (Issue 1): Pages e222937 PUBMED -
Quantifying emphysema in lung screening computed tomography with robust automated lobe segmentation.
Li TZ, Hin Lee H, Xu K, Gao R, Dawant BM, Maldonado F, Sandler KL, Landman BA
J Med Imaging (Bellingham). 2023 Jul; Volume 10 (Issue 4): Pages 044002 PUBMED