Skip to Main Content
An official website of the United States government

Lung cancer imaging biomarker development on computed tomography using artificial intelligence

Principal Investigator

Name
Julia Publicover

Degrees
MSc

Institution
University Health Network

Position Title
Director, Translational Research and Innovation, Techna

Email
julia.publicover@rmp.uhn.ca

About this CDAS Project

Study
NLST (Learn more about this study)

Project ID
NLST-575

Initial CDAS Request Approval
Oct 8, 2019

Title
Lung cancer imaging biomarker development on computed tomography using artificial intelligence

Summary
The University Health Network's Quantitative Imaging for Personalized Cancer Medicine (QIPCM) Imaging core lab and Altis Labs, Inc, a Toronto-based company which is submitting its own project proposal and DTA for this research project, are collaborating to develop and validate novel lung cancer imaging biomarkers using deep learning. This project will entail labeling the data to develop detection, segmentation, and classification algorithms. We will explore the potential clinical utility when incorporating algorithms into physician workflow and real-world clinical data. Our goal is to develop robust algorithms that can be applied in clinical settings to improve patient care and outcomes.

Aims

- develop state-of-the-art nodule detection and classification algorithms
- test algorithms' utility on screening, diagnostic, and staging workflows

Collaborators

UHN (Quantitative Imaging for Personalized Cancer Medicine) and Altis Labs' R&D team.