Correlate quantitative CT features with long-term outcomes in patients with early signs of fibrosis
Diagnosis in turn is often delayed as CT appearances and lung function test profiles are only well characterized for established, relatively late-stage disease. Recognising FLD at an early stage is therefore essential to create a treatment window where disease that has not yet become extensive could potentially be controlled. We aim to use deep learning-based algorithms to quantify lung damage and disease progression and to correlate these quantitative features and signatures with long-term outcomes.
Correlate quantitative CT features suggestive of early fibrosis with long-term outcomes
Correlate quantitative CT features indicating rapidly progressive fibrosis with long-term outcomes
Prof Daniel Alexander, UCL
Prof Geoff Parker, UCL
Mr Moucheng Xu, UCL
Dr Cheung Wing Keung, UCL
Mr Ashkan Pakzad, UCL
Dr Arjun Nair, UCL
Dr Eyjolfur Gudmundsson, UCL