Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
Spatio-temporal deep learning with temporal attention for indeterminate lung nodule classification.
Pubmed ID
40818205 (View this publication on the PubMed website)
Digital Object Identifier
Publication
Comput Biol Med. 2025 Aug 15; Volume 196 (Issue Pt C): Pages 110813
Authors
Farina B, Carbajo Benito R, Montalvo-García D, Bermejo-Peláez D, Maceiras LS, Ledesma-Carbayo MJ
Affiliations
  • Biomedical Image Technologies, ETSI Telecomunicación, Madrid, 28040, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto Salud Carlos III, Madrid, 28040, Spain. Electronic address: benito.farina@upm.es.
  • Biomedical Image Technologies, ETSI Telecomunicación, Madrid, 28040, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto Salud Carlos III, Madrid, 28040, Spain.
  • Biomedical Image Technologies, ETSI Telecomunicación, Madrid, 28040, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto Salud Carlos III, Madrid, 28040, Spain; SPOTLAB, Madrid, 28040, Spain.
  • Department of Oncology, Clínica Universidad de Navarra, Pamplona, 31008, Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Instituto Salud Carlos III, Madrid, 28040, Spain.
  • Biomedical Image Technologies, ETSI Telecomunicación, Madrid, 28040, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto Salud Carlos III, Madrid, 28040, Spain. Electronic address: mj.ledesma@upm.es.
Abstract

Lung cancer is the leading cause of cancer-related death worldwide. Deep learning-based computer-aided diagnosis (CAD) systems in screening programs enhance malignancy prediction, assist radiologists in decision-making, and reduce inter-reader variability. However, limited research has explored the analysis of repeated annual exams of indeterminate lung nodules to improve accuracy. We introduced a novel spatio-temporal deep learning framework, the global attention convolutional recurrent neural network (globAttCRNN), to predict indeterminate lung nodule malignancy using serial screening computed tomography (CT) images from the National Lung Screening Trial (NLST) dataset. The model comprises a lightweight 2D convolutional neural network for spatial feature extraction and a recurrent neural network with a global attention module to capture the temporal evolution of lung nodules. Additionally, we proposed new strategies to handle missing data in the temporal dimension to mitigate potential biases arising from missing time steps, including temporal augmentation and temporal dropout. Our model achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.954 in an independent test set of 175 lung nodules, each detected in multiple CT scans over patient follow-up, outperforming baseline single-time and multiple-time architectures. The temporal global attention module prioritizes informative time points, enabling the model to capture key spatial and temporal features while ignoring irrelevant or redundant information. Our evaluation emphasizes its potential as a valuable tool for the diagnosis and stratification of patients at risk of lung cancer.

Related CDAS Studies
Related CDAS Projects