Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
Retrospective analysis of haplotype-based case control studies under a flexible model for gene environment association.
Pubmed ID
17490987 (View this publication on the PubMed website)
Publication
Biostatistics. 2008 Jan; Volume 9 (Issue 1): Pages 81-99
Authors
Chen YH, Chatterjee N, Carroll RJ
Affiliations
  • Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan, People's Republic of China.
Abstract

Genetic epidemiologic studies often involve investigation of the association of a disease with a genomic region in terms of the underlying haplotypes, that is the combination of alleles at multiple loci along homologous chromosomes. In this article, we consider the problem of estimating haplotype-environment interactions from case-control studies when some of the environmental exposures themselves may be influenced by genetic susceptibility. We specify the distribution of the diplotypes (haplotype pair) given environmental exposures for the underlying population based on a novel semiparametric model that allows haplotypes to be potentially related with environmental exposures, while allowing the marginal distribution of the diplotypes to maintain certain population genetics constraints such as Hardy-Weinberg equilibrium. The marginal distribution of the environmental exposures is allowed to remain completely nonparametric. We develop a semiparametric estimating equation methodology and related asymptotic theory for estimation of the disease odds ratios associated with the haplotypes, environmental exposures, and their interactions, parameters that characterize haplotype-environment associations and the marginal haplotype frequencies. The problem of phase ambiguity of genotype data is handled using a suitable expectation-maximization algorithm. We study the finite-sample performance of the proposed methodology using simulated data. An application of the methodology is illustrated using a case-control study of colorectal adenoma, designed to investigate how the smoking-related risk of colorectal adenoma can be modified by "NAT2," a smoking-metabolism gene that may potentially influence susceptibility to smoking itself.

Related CDAS Studies
Related CDAS Projects