Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
International Lung Cancer Consortium: coordinated association study of 10 potential lung cancer susceptibility variants.
Pubmed ID
20106900 (View this publication on the PubMed website)
Publication
Carcinogenesis. 2010 Apr; Volume 31 (Issue 4): Pages 625-33
Authors
Truong T, Sauter W, McKay JD, Hosgood HD, Gallagher C, Amos CI, Spitz M, Muscat J, Lazarus P, Illig T, Wichmann HE, Bickeböller H, Risch A, Dienemann H, Zhang ZF, Naeim BP, Yang P, Zienolddiny S, Haugen A, Le Marchand L, ...show more Hong YC, Kim JH, Duell EJ, Andrew AS, Kiyohara C, Shen H, Matsuo K, Suzuki T, Seow A, Ng DP, Lan Q, Zaridze D, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Constantinescu V, Bencko V, Foretova L, Janout V, Caporaso NE, Albanes D, Thun M, Landi MT, Trubicka J, Lener M, Lubinski J, EPIC-lung, Wang Y, Chabrier A, Boffetta P, Brennan P, Hung RJ
Affiliations
  • International Agency for Research on Cancer, Lyon 69008, France.
Abstract

BACKGROUND: Analysis of candidate genes in individual studies has had only limited success in identifying particular gene variants that are conclusively associated with lung cancer risk. In the International Lung Cancer Consortium (ILCCO), we conducted a coordinated genotyping study of 10 common variants selected because of their prior evidence of an association with lung cancer. These variants belonged to candidate genes from different cancer-related pathways including inflammation (IL1B), folate metabolism (MTHFR), regulatory function (AKAP9 and CAMKK1), cell adhesion (SEZL6) and apoptosis (FAS, FASL, TP53, TP53BP1 and BAT3).

METHODS: Genotype data from 15 ILCCO case-control studies were available for a total of 8431 lung cancer cases and 11 072 controls of European descent and Asian ethnic groups. Unconditional logistic regression was used to model the association between each variant and lung cancer risk.

RESULTS: Only the association between a non-synonymous variant of TP53BP1 (rs560191) and lung cancer risk was significant (OR = 0.91, P = 0.002). This association was more striking for squamous cell carcinoma (OR = 0.86, P = 6 x 10(-4)). No heterogeneity by center, ethnicity, smoking status, age group or sex was observed. In order to confirm this association, we included results for this variant from a set of independent studies (9966 cases/11,722 controls) and we reported similar results. When combining all these studies together, we reported an overall OR = 0.93 (0.89-0.97) (P = 0.001). This association was significant only for squamous cell carcinoma [OR = 0.89 (0.85-0.95), P = 1 x 10(-4)].

CONCLUSION: This study suggests that rs560191 is associated to lung cancer risk and further highlights the value of consortia in replicating or refuting published genetic associations.

Related CDAS Studies
Related CDAS Projects