Skip to Main Content

An official website of the United States government

About this Publication
Title
Prediction of breast cancer risk by genetic risk factors, overall and by hormone receptor status.
Pubmed ID
22972951 (View this publication on the PubMed website)
Publication
J. Med. Genet. 2012 Sep; Volume 49 (Issue 9): Pages 601-8
Authors
Hüsing A, Canzian F, Beckmann L, Garcia-Closas M, Diver WR, Thun MJ, Berg CD, Hoover RN, Ziegler RG, Figueroa JD, Isaacs C, Olsen A, Viallon V, Boeing H, Masala G, Trichopoulos D, Peeters PH, Lund E, Ardanaz E, Khaw KT, ...show more Lenner P, Kolonel LN, Stram DO, Le Marchand L, McCarty CA, Buring JE, Lee IM, Zhang S, Lindström S, Hankinson SE, Riboli E, Hunter DJ, Henderson BE, Chanock SJ, Haiman CA, Kraft P, Kaaks R, BPC3
Affiliations
  • Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. a.huesing@dkfz.de
Abstract

OBJECTIVE: There is increasing interest in adding common genetic variants identified through genome wide association studies (GWAS) to breast cancer risk prediction models. First results from such models showed modest benefits in terms of risk discrimination. Heterogeneity of breast cancer as defined by hormone-receptor status has not been considered in this context. In this study we investigated the predictive capacity of 32 GWAS-detected common variants for breast cancer risk, alone and in combination with classical risk factors, and for tumours with different hormone receptor status.

MATERIAL AND METHODS: Within the Breast and Prostate Cancer Cohort Consortium, we analysed 6009 invasive breast cancer cases and 7827 matched controls of European ancestry, with data on classical breast cancer risk factors and 32 common gene variants identified through GWAS. Discriminatory ability with respect to breast cancer of specific hormone receptor-status was assessed with the age adjusted and cohort-adjusted concordance statistic (AUROC(a)). Absolute risk scores were calculated with external reference data. Integrated discrimination improvement was used to measure improvements in risk prediction.

RESULTS: We found a small but steady increase in discriminatory ability with increasing numbers of genetic variants included in the model (difference in AUROC(a) going from 2.7% to 4%). Discriminatory ability for all models varied strongly by hormone receptor status.

DISCUSSION AND CONCLUSIONS: Adding information on common polymorphisms provides small but statistically significant improvements in the quality of breast cancer risk prediction models. We consistently observed better performance for receptor-positive cases, but the gain in discriminatory quality is not sufficient for clinical application.

Related CDAS Studies
Related CDAS Projects