Skip to Main Content

An official website of the United States government

About this Publication
Title
Benefit-to-radiation-risk of low-dose computed tomography lung cancer screening.
Pubmed ID
37909872 (View this publication on the PubMed website)
Digital Object Identifier
Publication
Cancer. 2023 Nov 1
Authors
Hendrick RE, Smith RA
Affiliations
  • Department of Radiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.
  • Early Cancer Detection Science Department, American Cancer Society, Kennesaw, Georgia, USA.
Abstract

BACKGROUND: The US National Lung Screening Trial (NLST) and Dutch-Belgian NELSON randomized controlled trials have shown significant mortality reductions from low-dose computed tomography (CT) lung cancer screening (LCS). NLST, ITALUNG, and COSMOS trials have provided detailed dosimetry data for LCS.

METHODS: LCS trial mortality benefit results, organ dose and effective dose data, and Biological Effects of Ionizing Radiation, Report VII (BEIR VII) organ dose-to-cancer-mortality risk data are used to estimate benefit-to-radiation-risk ratios of the NLST, ITALUNG, and COSMOS trials. Data from those trials also are used to estimate benefit-to-radiation-risk ratios for longer-term LCS corresponding to scenarios recommended by United States Preventive Services Task Force and the American Cancer Society.

RESULTS: Including only screening doses, NLST benefit-to-radiation-risk ratios are 12:1 for males, 19:1 for females, and 16:1 overall. Including both screening and estimated follow-up doses, benefit-to-radiation-risk ratios for NLST are 9:1 for males, 13:1 for females, and 12:1 overall. For the ITALUNG trial, the benefit-to-radiation-risk ratio is 58-63:1. For the COSMOS trial, assuming sex-specific mortality benefits like those of the NELSON trial, the benefit-to-radiation-risk ratio is 23:1. Assuming a conservative 20% mortality benefit, annual screening in people 50-79 years old with a 20+ pack-year history of smoking has benefit-to-radiation-risk ratios of 23:1 (with follow-up doses adding 40% to screening doses) to 29:1 (with follow-up adding 10%) based on COSMOS dose data.

CONCLUSIONS: Based on linear, no threshold BEIR VII dose-risk estimates, benefit-to-radiation-risk ratios for LCS are highly favorable. Results emphasize the importance of using modern CT technologies, maintaining low diagnostic follow-up rates, and minimizing both screening and diagnostic follow-up doses.

PLAIN LANGUAGE SUMMARY: The benefits of lung cancer screening significantly outweigh estimates of future harms associated with exposure to radiation during screening and diagnostic follow-up examinations. Our findings emphasize the importance of lung cancer screening practices using state-of-the-art computed tomography scanners and specialized low-dose lung screening and diagnostic follow-up techniques.

Related CDAS Studies