Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
Benefit-to-radiation-risk of low-dose computed tomography lung cancer screening.
Pubmed ID
37909872 (View this publication on the PubMed website)
Digital Object Identifier
Publication
Cancer. 2023 Nov 1
Authors
Hendrick RE, Smith RA
Affiliations
  • Department of Radiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.
  • Early Cancer Detection Science Department, American Cancer Society, Kennesaw, Georgia, USA.
Abstract

BACKGROUND: The US National Lung Screening Trial (NLST) and Dutch-Belgian NELSON randomized controlled trials have shown significant mortality reductions from low-dose computed tomography (CT) lung cancer screening (LCS). NLST, ITALUNG, and COSMOS trials have provided detailed dosimetry data for LCS.

METHODS: LCS trial mortality benefit results, organ dose and effective dose data, and Biological Effects of Ionizing Radiation, Report VII (BEIR VII) organ dose-to-cancer-mortality risk data are used to estimate benefit-to-radiation-risk ratios of the NLST, ITALUNG, and COSMOS trials. Data from those trials also are used to estimate benefit-to-radiation-risk ratios for longer-term LCS corresponding to scenarios recommended by United States Preventive Services Task Force and the American Cancer Society.

RESULTS: Including only screening doses, NLST benefit-to-radiation-risk ratios are 12:1 for males, 19:1 for females, and 16:1 overall. Including both screening and estimated follow-up doses, benefit-to-radiation-risk ratios for NLST are 9:1 for males, 13:1 for females, and 12:1 overall. For the ITALUNG trial, the benefit-to-radiation-risk ratio is 58-63:1. For the COSMOS trial, assuming sex-specific mortality benefits like those of the NELSON trial, the benefit-to-radiation-risk ratio is 23:1. Assuming a conservative 20% mortality benefit, annual screening in people 50-79 years old with a 20+ pack-year history of smoking has benefit-to-radiation-risk ratios of 23:1 (with follow-up doses adding 40% to screening doses) to 29:1 (with follow-up adding 10%) based on COSMOS dose data.

CONCLUSIONS: Based on linear, no threshold BEIR VII dose-risk estimates, benefit-to-radiation-risk ratios for LCS are highly favorable. Results emphasize the importance of using modern CT technologies, maintaining low diagnostic follow-up rates, and minimizing both screening and diagnostic follow-up doses.

PLAIN LANGUAGE SUMMARY: The benefits of lung cancer screening significantly outweigh estimates of future harms associated with exposure to radiation during screening and diagnostic follow-up examinations. Our findings emphasize the importance of lung cancer screening practices using state-of-the-art computed tomography scanners and specialized low-dose lung screening and diagnostic follow-up techniques.

Related CDAS Studies