Risk-stratified multi-round PSA screening for prostate cancer integrating the screening reference level and subgroup-specific progression indicators.
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Hexi District, Tianjin, 300060, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, 300060, People's Republic of China.
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Hexi District, Tianjin, 300060, China. yubei_huang@163.com.
BACKGROUND: Although prostate-specific antigen (PSA) is widely used in prostate cancer (PCa) screening, nearly half of PCa cases are missed and less than one-third of cases are non-lethal. Adopting diagnostic criteria in population-based screening and ignoring PSA progression are presumed leading causes.
METHODS: A total of 31,942 participants with multi-round PSA tests from the PLCO trial were included. Time-dependent receiver-operating-characteristic curves and area under curves (tdAUCs) were performed to determine the screening reference level and the optimal subgroup-specific progression indicator. Effects of risk-stratified multi-round PSA screening were evaluated with multivariable Cox regression and measured with hazard ratio [HR (95%CIs)].
RESULTS: After a median follow-up of 11.6 years, a total of 3484 PCa cases and 216 PCa deaths were documented. The tdAUC of 10-year incidence PCa with PSA was 0.816, and the cut-off value was 1.61 ng/ml. Compared to subgroup with stable negative PSA in both first-round (FR) and last-round (LR) tests [FR(-)/LR(-)], HRs (95%CI) of PCa incidence were 1.66 (1.20-2.29), 8.29 (7.25-9.48), and 14.52 (12.95-16.28) for subgroups with loss of positive PSA[FR(+)/LR(-)], gain of positive PSA[FR(-)/LR(+)], and stable positive PSA[FR(+)/LR(+)]; while HRs(95%CI) of PCa mortality were 1.47 (0.52-4.15), 5.71 (3.68-8.86), and 5.01 (3.41-7.37). After excluding regressive PSA [(namely FR(+)/LR(-)], absolute velocity was the shared optimal progression indicator for subgroups with FR(-)/LR(-), FR(-)/LR(+), and FR(+)/LR(+), with tdAUCs of 0.665, 0.681 and 0.741, and cut-off values of 0.07, 0.21, and 0.33 ng/ml/year. After reclassifying participants into groups with positive and negative progression based on subgroup-specific progression indicators, incidence HR (95%CI) were 2.41 (1.87-3.10), 2.91 (2.43-3.48), and 3.16 (2.88-3.46) for positive progression compared to negative progression within subgroups of FR(-)/LR(-), FR(-)/LR(+), and FR(+)/LR(+), while mortality HR (95%CI) were 2.22 (0.91-5.38), 2.37 (1.28-4.38), and 2.98 (1.94-4.59). To improve screening performances by excluding regressive PSA and low-risk positive progression in FR(-)/LR(-), optimized screening strategy not only significantly reduce 32.4% of missed PCa (54.0% [1881/3484] vs. 21.6% [754/3484], P < 0.001), but also detected additional 8.0% of high-grade PCa (Gleason score 7-10: 36.0% [665/1849] vs. 28.0% [206/736], P < 0.001) than traditional screening strategy.
CONCLUSIONS: Risk-stratified multi-round PSA screening strategy integrating the screening reference level and the optimal subgroup-specific progression indicator of PSA could be recommended as a fundamental strategy to reduce missed diagnosis and improve the detection of high-grade PCa cases.