Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
A multi-parameterized artificial neural network for lung cancer risk prediction.
Pubmed ID
30356283 (View this publication on the PubMed website)
Digital Object Identifier
Publication
PLoS One. 2018; Volume 13 (Issue 10): Pages e0205264
Authors
Hart GR, Roffman DA, Decker R, Deng J
Affiliations
  • Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, Connecticut, United States of America.
Abstract

The objective of this study is to train and validate a multi-parameterized artificial neural network (ANN) based on personal health information to predict lung cancer risk with high sensitivity and specificity. The 1997-2015 National Health Interview Survey adult data was used to train and validate our ANN, with inputs: gender, age, BMI, diabetes, smoking status, emphysema, asthma, race, Hispanic ethnicity, hypertension, heart diseases, vigorous exercise habits, and history of stroke. We identified 648 cancer and 488,418 non-cancer cases. For the training set the sensitivity was 79.8% (95% CI, 75.9%-83.6%), specificity was 79.9% (79.8%-80.1%), and AUC was 0.86 (0.85-0.88). For the validation set sensitivity was 75.3% (68.9%-81.6%), specificity was 80.6% (80.3%-80.8%), and AUC was 0.86 (0.84-0.89). Our results indicate that the use of an ANN based on personal health information gives high specificity and modest sensitivity for lung cancer detection, offering a cost-effective and non-invasive clinical tool for risk stratification.

Related CDAS Studies
Related CDAS Projects