Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
Insights for Management of Ground-Glass Opacities From the National Lung Screening Trial.
Pubmed ID
31125735 (View this publication on the PubMed website)
Digital Object Identifier
Publication
J Thorac Oncol. 2019 Sep; Volume 14 (Issue 9): Pages 1662-1665
Authors
Robbins HA, Katki HA, Cheung LC, Landy R, Berg CD
Affiliations
  • International Agency for Research on Cancer, Lyon, France. Electronic address: RobbinsH@iarc.fr.
  • Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.
Abstract

BACKGROUND: In the National Lung Screening Trial (NLST), screen-detected cancers that would not have been identified by the Lung Computed Tomographic Screening Reporting and Data System (Lung-RADS) nodule management guidelines were frequently ground-glass opacities (GGOs). Lung-RADS suggests that GGOs with diameter less than 20 mm return for annual screening, and GGOs greater than or equal to 20 mm receive 6-month follow-up. We examined whether this 20-mm threshold gives consistent management of GGOs compared with solid nodules.

METHODS: First, we calculated diameter-specific malignancy probabilities for GGOs and solid nodules in the NLST. Using the solid-nodule malignancy risks as benchmarks, we suggested risk-based management categories for GGOs based on their probability of malignancy. Second, we compared lung-cancer mortality between GGOs and solid nodules in the same risk-based category.

RESULTS: Using the Lung-RADS v1.0 classifications, malignancy probability is higher for GGOs than solid nodules within the same category. A risk-based classification of GGOs would assign annual screening for GGOs 4 to 5 mm (0.4% malignancy risk); 6-month follow-up for GGOs 6 to 7 mm (1.1%), 8 to 14 mm (3.0%), and 15 to 19 mm (5.2%); and 3-month follow-up for greater than or equal to 20 mm (10.9%). This reclassification would have assigned similarly fatal cancers to 3-month follow-up (hazard ratio = 2.0 for lung-cancer death in GGOs versus solid-nodule cancers, 95% confidence interval: 0.4-8.7), but for 6-month follow-up, mortality was lower in GGO cancers (hazard ratio = 0.18, 95% confidence interval: 0.05-0.67).

CONCLUSIONS: If Lung-RADS categories for GGOs were based on malignancy probability, then 6- to 19-mm GGOs would receive 6-month follow-up and greater than or equal to 20-mm GGOs would receive 3-month follow-up. Such risk-based management for GGOs could improve the sensitivity of Lung-RADS, especially for large GGO cancers. However, small GGO cancers were less aggressive than their solid-nodule counterparts.

Related CDAS Studies
Related CDAS Projects