Micronodules Detected on Computed Tomography During the National Lung Screening Trial: Prevalence and Relation to Positive Studies and Lung Cancer.
- Department of Radiology, Clinical Operations and Cancer Services, Wake Forest Baptist Health and School of Medicine, Winston-Salem, North Carolina. Electronic address: munden@wakehealth.edu.
- Wake Forest University Health Sciences Center, Winston-Salem, North Carolina.
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida.
- Brown University, Providence, Rhode Island.
- Department of Radiological Sciences/MII, David Geffen School of Medicine at UCLA, Los Angeles, California.
- Department of Biostatistics, School of Public Health, Brown University, Providence, Rhode Island.
INTRODUCTION: In the National Lung Screening Trial (NLST) all cases with a 4-mm nodule (micronodule) and no other findings were classified as a negative study. The prevalence and malignant potential of micronodules in the NLST is evaluated to understand if this classification was appropriate.
METHODS AND MATERIALS: In the NLST a total of 53,452 participants were enrolled with 26,722 undergoing low-dose computed tomography (CT) screening. To determine whether a micronodule developed into a lung cancer, a list from the NLST database of those participants who developed lung cancer and had a micronodule recorded was selected. The CT images of this subset were reviewed by experienced, fellowship-trained thoracic radiologists (R.F.M., C.C., P.M.B., and D.R.A.), all of whom participated as readers in the NLST.
RESULTS: There were 26,722 participants who underwent CT in the NLST, of which 11,326 (42%) participants had at least one CT with a micronodule. Five thousand five hundred sixty (49%) of these participants had at least one positive CT examination, of which 409 (3.6%) subsequently were diagnosed with lung cancer. Of the 409 lung cancer cases with a micronodule recorded, there were 13 cases in which a micronodule developed into lung cancer. Considering the 13 cases, they represent 1.2% (13 of 1089) of the lung cancers diagnosed in the CT arm of the NLST and 0.11% (13 of 11,326) of the total micronodule cases. Additionally they represent 0.23% (13 of 5560) of the micronodule and at least one positive CT examination cases and 3.2% (13 of 409) of the micronodule cases diagnosed with lung cancer. The average size of the nodule at baseline (recorded as maximum diameter by perpendicular diameter) was 3.0 × 2.5 mm (ranges 2 x 4 mm and 2 x 4 mm) and at the positive CT the nodule was 11.1 × 8.6 mm (ranges, 6 x 20 mm and 5 x 14 mm); a difference of average change in size of 8.1 × 6.1 mm. The average number of days from first CT with a micronodule recorded to positive CT was 459 days (range, 338 - 723 days), the mean time from first CT with micronodule to lung cancer diagnosis was 617 days (range, 380 - 1140 days) and the mean time from positive CT to lung cancer diagnosis was 160 days (range, 18 - 417 days). Histologically, there was one small cell carcinoma and 12 non-small cell with stages of IA in 8 (62%), stage IB in 2 (15%), and 1 each stage IIIA, IIIB, and IV. The overall survival of NSCLC cases with a micronodule was not significantly different than the survival of the CT subset diagnosed with NSCL (p = 0.36).
CONCLUSIONS: Micronodules are common among lung cancer-screened participants and are capable of developing into lung cancer; however, following micronodules by annual CT screening surveillance is appropriate and does not impact overall survival or outcome.
- 201111-0037: The Outcome of Micronodules (<4mm) detected on CT in NLST participants (Reginald Munden - 2011)