Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
Estimating Case-Fatality Reduction from Randomized Screening Trials
Digital Object Identifier
Publication
EM. 2018 Nov 7; Volume 7 (Issue 1): Pages 20180007
Authors
Sudipta Saha, Zhihui (Amy) Liu and Olli Saarela
Abstract

In randomized cancer screening trials where asymptomatic individuals are assigned to undergo a regimen of screening examinations or standard care, the primary objective typically is to estimate the effect of screening assignment on cancer-specific mortality by carrying out an ’intention-to-screen’ analysis. However, most of the participants in the trial will be cancer-free; only those developing a genuine cancer that is screening-detectable can potentially benefit from screening induced early treatments. Here we consider measuring the effect of early treatments in this partially latent subpopulation in terms of reduction in case fatality. To formalize the estimands and identifying assumptions in a causal modeling framework, we first define two measures, namely proportional and absolute case-fatality reduction, using potential outcomes notation. We re-derive an earlier proposed estimator for the former, and propose a new estimator for the latter motivated by the instrumental variable approach. The methods are illustrated using data from the US National Lung Screening Trial, with specific attention to estimation in the presence of censoring and competing risks.

Related CDAS Studies
Related CDAS Projects