Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
Fast Regions-of-Interest Detection in Whole Slide Histopathology Images
Digital Object Identifier
Publication
Patch-MI 2015. 2016 Jan 8; Volume 9467
Authors
Ruoyu Li , Junzhou Huang
Abstract

In this paper, we present a novel superpixel based Region of Interest (ROI) search and segmentation algorithm. The proposed superpixel generation method differs from pioneer works due to its combination of boundary update and coarse-to-fine refinement for superpixel clustering. The former maintains the accuracy of segmentation, meanwhile, avoids much of unnecessary revisit to the ‘non-boundary’ pixels. The latter reduces the complexity by faster localizing those boundary blocks. The paper introduces the novel superpixel algorithm [10] to the problem of ROI detection and segmentation along with a coarse-to-fine refinement scheme over a set of image of different magnification. Extensive experiments indicates that the proposed method gives better accuracy and efficiency than other superpixel-based methods for lung cancer cell images. Moreover, the block-wise coarse-to-fine scheme enables a quick search and segmentation of ROIs in whole slide images, while, other methods still cannot.

Related CDAS Studies
Related CDAS Projects