Skip to Main Content

An official website of the United States government

Government Funding Lapse

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted. The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit  cc.nih.gov. Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

About this Publication
Title
AI-based improvement in lung cancer detection on chest radiographs: results of a multi-reader study in NLST dataset.
Pubmed ID
34089072 (View this publication on the PubMed website)
Digital Object Identifier
Publication
Eur Radiol. 2021 Jun 4
Authors
Yoo H, Lee SH, Arru CD, Doda Khera R, Singh R, Siebert S, Kim D, Lee Y, Park JH, Eom HJ, Digumarthy SR, Kalra MK
Affiliations
  • Lunit, Seoul, Korea.
  • Division of Thoracic Imaging, Department of Radiology, Massachusetts General Hospital, 75 Blossom Court, Boston, MA, 02114, USA.
  • Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
  • Suwon Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Youngin-si, Gyeongi-do, 16954, Korea.
  • Cheju Halla General Hospital, 65 Doryeong-ro, Yeon-dong, Jeju-si, Jeju-do, Korea.
  • Division of Thoracic Imaging, Department of Radiology, Massachusetts General Hospital, 75 Blossom Court, Boston, MA, 02114, USA. mkalra@mgh.harvard.edu.
Abstract

OBJECTIVE: Assess if deep learning-based artificial intelligence (AI) algorithm improves reader performance for lung cancer detection on chest X-rays (CXRs).

METHODS: This reader study included 173 images from cancer-positive patients (n = 98) and 346 images from cancer-negative patients (n = 196) selected from National Lung Screening Trial (NLST). Eight readers, including three radiology residents, and five board-certified radiologists, participated in the observer performance test. AI algorithm provided image-level probability of pulmonary nodule or mass on CXRs and a heatmap of detected lesions. Reader performance was compared with AUC, sensitivity, specificity, false-positives per image (FPPI), and rates of chest CT recommendations.

RESULTS: With AI, the average sensitivity of readers for the detection of visible lung cancer increased for residents, but was similar for radiologists compared to that without AI (0.61 [95% CI, 0.55-0.67] vs. 0.72 [95% CI, 0.66-0.77], p = 0.016 for residents, and 0.76 [95% CI, 0.72-0.81] vs. 0.76 [95% CI, 0.72-0.81, p = 1.00 for radiologists), while false-positive findings per image (FPPI) was similar for residents, but decreased for radiologists (0.15 [95% CI, 0.11-0.18] vs. 0.12 [95% CI, 0.09-0.16], p = 0.13 for residents, and 0.24 [95% CI, 0.20-0.29] vs. 0.17 [95% CI, 0.13-0.20], p < 0.001 for radiologists). With AI, the average rate of chest CT recommendation in patients positive for visible cancer increased for residents, but was similar for radiologists (54.7% [95% CI, 48.2-61.2%] vs. 70.2% [95% CI, 64.2-76.2%], p < 0.001 for residents and 72.5% [95% CI, 68.0-77.1%] vs. 73.9% [95% CI, 69.4-78.3%], p = 0.68 for radiologists), while that in cancer-negative patients was similar for residents, but decreased for radiologists (11.2% [95% CI, 9.6-13.1%] vs. 9.8% [95% CI, 8.0-11.6%], p = 0.32 for residents and 16.4% [95% CI, 14.7-18.2%] vs. 11.7% [95% CI, 10.2-13.3%], p < 0.001 for radiologists).

CONCLUSIONS: AI algorithm can enhance the performance of readers for the detection of lung cancers on chest radiographs when used as second reader.

KEY POINTS: • Reader study in the NLST dataset shows that AI algorithm had sensitivity benefit for residents and specificity benefit for radiologists for the detection of visible lung cancer. • With AI, radiology residents were able to recommend more chest CT examinations (54.7% vs 70.2%, p < 0.001) for patients with visible lung cancer. • With AI, radiologists recommended significantly less proportion of unnecessary chest CT examinations (16.4% vs. 11.7%, p < 0.001) in cancer-negative patients.

Related CDAS Studies
Related CDAS Projects